
Robots from Jupyter

Workshop on authoring Robot Framework test
and task suites with JupyterLab

NickAsko

Workshop 16.1.2019

● Setting up JupyterLab + Robot
● Introducing JupyterLab
● Exercise: Python notebook
● Exercise: Robot notebook
● Selenium autocompletion
● Exercise: Multiple notebooks
● Sharing and exporting notebooks
● Executing notebooks
● Look into the Jupyter ecosystem

Setting up
JupyterLab + Robot

RobotLab bundle installer

https://github.com/robots-from-jupyter/robotlab/releases

● Windows, MacOS, Linux
● Easy to uninstall (just delete the directory and icon)
● Inconvenient download size (400-500MB)

Ingredients:
Conda, Jupyter[Lab|Library], Robot[Mode|Kernel],
Selenium[Library|Screenshots], OpenCV, RESTInstance,
[Chrome|Gecko]Driver, example notebooks, tutorial

https://github.com/robots-from-jupyter/robotlab/releases

Manual install with Miniconda

Install Miniconda. Launch Anaconda Prompt. Then

1. conda install -c conda-forge nodejs jupyterlab

robotframework-seleniumlibrary geckodriver

python-chromedriver-binary pillow lunr

2. pip install robotkernel

robotframework-seleniumscreenshots nbimporter

3. jupyter labextension install jupyterlab_robotmode

Run JupyterLab

With RobotLab: Click the RobotLab Icon or...
~/robotlab/bin/activate # osx/linux

c:\robotlab\Scripts\activate.bat # win

robotlab

With Anaconda Prompt:

jupyter lab

With Nix or NixOS:

https://pypi.org/project/robotkernel/

https://pypi.org/project/robotkernel/

Introducing
JupyterLab

Default keyboard bindings

up / j select cell above

down / k select cell below

ctrl + enter run cell

shift + enter run cell, select below

alt + enter run cell, insert below

a insert cell above

b insert cell below

c copy cell

v paste cell

d, d delete selected cell

shift + m merge selected cell(s)

y change cell to code mode

m change cell to markdown

enter enter edit mode

esc exit edit mode

i,i interrupt kernel

0, 0 restart kernel

Available on edit mode
tab code completion / indent

ctrl + shift+ - split cell

Exercise:
Python notebook

01 Running Code.ipynb
02 Python XKCD.ipynb

Exercise

The JSON API for XKCD is described at
https://xkcd.com/json.html

Create a new Python notebook and implement function
def get_xkcd_by_num(num)

that accepts an integer and returns XKCD image of the given
number.

Write narrative documentation for that function in
Markdown and executable Python example lines.

https://xkcd.com/json.html

Recap

● JupyterLab user interface (file browser, menu, notebook)
● Loading and creating notebooks
● Opening JupyterLab inspector
● Navigating around notebook
● Editing and executing notebook cells
● Copying, cutting, pasting, moving notebook cells
● Autocompleting things with <TAB>
● Following JupyterLab inspector
● Iterating cell with CTRL+ENTER until ready

Homework: magics

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Magics are “magical” syntax for modifying the underlying Python
environment supported mainly by Jupyter Python kernels.

For example
!pip install requests

would install requests Python package into Python environment.

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Exercise:
Robot notebook

Robot Framework

*** Settings ***

Library SeleniumLibrary

*** Tasks ***

Capture screenshot of DuckDuckGo.com

Open browser http://duckduckgo.com

Capture page screenshot

http://robotframework.org/robotframework/

http://duckduckgo.com
http://robotframework.org/robotframework/

03 Running Robot.ipynb
04 Robot XKCD.ipynb

Exercise

The JSON API for XKCD is described at
https://xkcd.com/json.html

Create a new Robot notebook and implement keyword
*** Keywords ***

Get XKCD by num

[Arguments] ${num}

that accepts an integer and [Return] image of the given
number. Write narrative documentation for that keyword in
Markdown and executable Robot example *** Tasks *** .

https://xkcd.com/json.html

RobotKenel quirks (bugs?)

● Some completions can be suggested only after at least
one test or task has been executed

● Cells without robot *** [Headings] *** or content
outside headings may be silently ignored

● Failing library import is silently ignored (but logged)

● RobotKernel requires kernel restart to recover from
manually closed SeleniumLibrary browser windows

Recap

● Structure of a robot notebook
● How every robot cell starts with a *** [Heading] ***
● Executing robot cells with different section data
● Autocompleting Robot Framework structural words
● Autocompleting Robot Framework keywords
● Using JupyterLab inspector for context documentation
● Using JupyterLab inspector for keyword documentation
● Viewing and downloading logs and reports
● Restarting kernel to reset RobotKernel state
● Capturing and cropping screenshots with Selenium

Interactive Robot:
Selenium autocompletion

05 Interactive Selenium.ipynb

Recap

● Leaving a singleton test browser open while iterating
● SeleniumLibrary locator prefixes for suggestions:

id:<TAB> name:<TAB> link:<TAB>

● SeleniumLibrary locator prefixes for completions:
id:...<TAB> name:...<TAB> link:...<TAB>

tag:...<TAB> xpath:...<TAB>

partial link:...<TAB>

● Interactive SeleniumLibrary picker with:
css:<TAB>

● Closing the test browser manually / with suite teardown

Exercise:
Multiple notebooks

06 Importing Notebooks.ipynb

Exercise

Parameterize notebook with
 *** Variables ***

 ${DEPARTURE_DATE} ${EMPTY}

 ${DEPARTURE_TIME} 17.00

Modify notebook task to use ${DEPARTURE_TIME} and to
prefer ${DEPARTURE_DATE} when it is not empty. You could
use either write new Python keywords or use BuiltIn-library
http://robotframework.org/robotframework/

http://robotframework.org/robotframework/

Recap

● Authoring a Python keyword library with JupyterLab
● Authoring a Robot Framework keyword resource

notebook with JupyterLab
● Importing Python keywords library from a notebook
● Importing Robot Framework keywords from a notebook
● Limits of Robot Framework resources files / notebooks
● Using Python unittest module within a Python notebook
● Defining global variables (overridable by robot runner)

Sharing and
exporting
notebooks

Sharing and exporting notebooks

● Using JupyterLab
File → Export Notebook As… →

● Using Jypyter nbconvert
jupyter nbconvert --to html MyNotebook.ipynb

https://nbconvert.readthedocs.io/en/latest/customizing.html

https://nbconvert.readthedocs.io/en/latest/customizing.html

Executing
notebooks

Executing notebooks

● Executing notebook with Jupyter
jupyter nbconvert --to notebook --execute MyNotebook.ipynb

● Executing notebook with RobotKernel
nbrobot MyNotebook.ipynb

● Executing exported script with Robot Framework
jupyter nbconvert --to script MyNotebook.ipynb

robot MyNotebook.robot

Look into the
Jupyter ecosystem

Look into the Jupyter ecosystem

UI: Notebook Classic

● RISE (with robot)
● nbgrader

UI: JupyterLab

● jupyterlab_vim
● jupyterlab-commenting
● jupyter-widgets

Testing

● nbval

Free Services *

● nbviewer.jupyter.org
● mybinder.org
● Google Colab
● Azure Notebooks

https://github.com/damianavila/RISE
https://www.youtube.com/watch?v=kgLVioHZTgA
https://github.com/jupyter/nbgrader
https://github.com/jwkvam/jupyterlab-vim
https://github.com/jupyterlab/jupyterlab-commenting
https://github.com/jupyter-widgets/ipywidgets/tree/master/packages/jupyterlab-manager
https://nbval.readthedocs.io
https://nbviewer.jupyter.org/
https://mybinder.org/
https://colab.research.google.com
https://notebooks.azure.com/

Jupyter Widgets & Renderers

Widgets

● ipywidgets
● pythreejs
● ipyleaflet
● itk-widgets
● plotly.py

Renderers

● jupyter-renderers
● jupyterlab-drawio
● jupyterlab_graphviz

https://ipywidgets.readthedocs.io
https://pythreejs.readthedocs.io
https://github.com/jupyter-widgets/ipyleaflet
https://github.com/InsightSoftwareConsortium/itk-jupyter-widgets
https://plot.ly/python/getting-started/
https://github.com/jupyterlab/jupyter-renderers
https://github.com/QuantStack/jupyterlab-drawio
https://github.com/deathbeds/jupyterlab_graphviz

If you have many notebooks...

Run reports

● papermill

Generate documentation

● nbsphinx

Publish to a wiki

● nbconflux

Host an app with a kernel

● jupyter-kernel-gateway

https://github.com/nteract/papermill
https://nbsphinx.readthedocs.io/en/0.4.2/
https://github.com/Valassis-Digital-Media/nbconflux
https://jupyter-kernel-gateway.readthedocs.io

Crazy Demos

Visual Robot Programming

● jupyterlab-blockly

Lab with no server

● jyve

Kernels as Widgets

● ktop

https://mybinder.org/v2/gh/bollwyvl/jupyterlab-outsource/feat/robot?urlpath=lab%2Ftree%2Fsrc%2Fblockly%2Fnotebooks%2FRobot%20Blocks.ipynb
https://deathbeds.github.com/jyve
https://github.com/deathbeds/ktop

Questions?

Thank you!

